
1 Introduction
Urban growth modeling has evolved over recent years to capture increasingly well the
details of urban morphology and structure on a qualitative as well as a quantitative
level. In this paper we are concerned mainly with demonstrating the ability of the
proposed framework to produce realistic urban growth patterns. Urban growth is a
complex dynamical process in which many of the patterns which are observed at
a macroscopic scale emerge as a result of microscopic dynamics. It is also often
macroscopic properties that can be directly observed and measured in real systems.
Therefore, comparative analysis of patterns observed in simulation and reality can be
helpful for validating a model and thereby gaining knowledge about microscopic
properties. Fractal analysis has been used extensively in the analysis of urban growth
modeling and can capture morphological properties that elude other means of meas-
urement. In addition to fractal dimension analysis we also introduce complementary
methods and concepts for spatial analysis that are borrowed from statistical physics.

Broadly speaking, urban modeling is directed at two objectives. On the one hand,
modeling is aimed at providing a deeper theoretical understanding of urban dynamics.
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On the other hand, effort is being directed at developing realistic, applied models that
can serve as planning and policy tools. In the past these two goals have not been easily
reconciled. Classical theoretical models, such as the Alonso ^Muth land-use model
(Alonso, 1964) and its descendants in the new urban economics (Papageorgiou, 1990),
lack realism. Entropy-maximizing models and related approaches based on spatial
interaction models developed in the 1960s and 1970s (Batty, 1976; Wilson, 1970) were
much more realistic. They were shown to be capable of generating spatial structure,
and are in a sense similar to the approach developed hereöfor example, both assume
that a spatial structure and spatial interaction are mutually determined. However, the
emphasis was primarily on predicting interzonal flows rather than achieving a theoret-
ical understanding of spatial structure, although White (1977; 1978) used the approach
to identify a bifurcation in spatial structure that depends on interaction parameters.

The advent of new modeling techniques has at least permitted the formulation of
models that are both realistic and theoretically rich. Examples of these techniques,
ordered roughly from the more theoretical to the more applied, are: sociodynamic
(Weidlich, 1995; 2000), diffusion-limited aggregation (DLA) (Batty and Longley, 1994;
Witten and Sander, 1983), correlated percolation (Makse et al, 1998), cellular automata
(CA) models (Batty and Xie, 1994; Benguigui, 1995; Benguigui and Daoud, 1991;
Couclelis, 1997; Engelen et al, 1997; Takeyama, 1996; White et al, 1997; Wu, 1998a;
Xie, 1996), agent-based (Sanders et al, 1997) and integrated agent-based ^CA
models (Benenson and Portugali, 1997; Portugali, 2000), and integrated CA^GIS models
(Candau et al, 2000; Clarke and Gaydos, 1998; Clark et al, 1997; Wu, 1998b). Although
particular models developed using these techniques may be designed to emphasize
theory over realism or vice versa, in every case the models not only have large-scale
theoretical implications but also produce rich detail.

The design of the framework that we propose in this paper grew from the realiza-
tion that certain properties are likely to be common to many different classes of
systems that incorporate spatial interactions. Pattern formation is often surprisingly
robust to changes in the details of the rules governing its dynamics and many impor-
tant aspects of physical models are not depicting the phenomena being modeled
specifically but more generally model how interactions take place between points in
a space. By no means are we the first to realize these relations; they are in fact central
themes behind well-established concepts originating from natural science, such as
universality. They have also been applied to social sciences and urban systems
(see, for example, Portugali, 2000; Weidlich, 2000). Also, maximum-entropy models
(to which our model is related through its use of the Maxwell ^ Boltzmann distribution)
dates back to the 1950s in the context of urban and transportation models (Wilson,
1970).

Constructing this framework, we have borrowed much from existing well-
established techniques and models from statistical physics and have striven to retain
the original terminology as far as possible because we feel that this will promote clarity
in the long run. There is, however, because of this, some need to introduce certain
concepts in this new context. In particular, we want to clarify our use of the term
`interaction' because there is no complete agreement between the meaning of that
term in all fields and we were unable to find a good synonym: as defined in physics,
interactions are the influence (often in terms of force) that entities have on each other.
The intensity of an interaction is often a function of the distance between the interact-
ing parts. In the context of an urban system, it would correspond rather to a much
simplified aggregate of several different phenomena that in various ways act to impose
influence between land uses in different areas (for example: competition between
businesses, noise and pollution from industry, employment, etc). The term `interaction',
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as used here, does not specifically refer to any economic or demographic measurement
of exchange between different areas.

This integration of theory and realism is crucial because, in general, more powerful
tests of theory demand more detailedöthat is, realisticöpredictions. Conversely,
realistic models developed for practical applications by planners and others can only
be used with confidence if they are based on well-tested theory and thus come with
some assurance of reliability. Furthermore, some long-standing theoretical issues in
urban spatial dynamics have practical policy implications. For example, the well-
known rank ^ size rule for urban size hierarchies, where the relationship between the
size of a center and its rank is log ^ linear, still lacks a complete theoretical explana-
tion; and those concerned with policy consider it uninteresting and arbitrary. Yet some
major planning and policy initiatives have in effect been directed at changing or
preserving the rank ^ size relationship in particular systems: the attempt in France,
for example, to reduce the dominance of Paris (that is, to nudge the urban system
toward the log ^ linear relationship) and the policies in many European and North
American cities designed to preserve a strong central business district (that is, to
prevent the collapse of the log ^ linear relationship among intraurban retail centers)
(White and Engelen, 1997).

Recent work in urban systems theory, in particular, and in the area of complex
systems, in general, is providing deeper theoretical insight into the origin and evolution
of urban form. Results in the area of complex systems suggest that the rank ^ size
relationship may be a characteristic scale-free metastable form transitional between
clustered and dispersed (Kauffman, 1993; Langton, 1992). In this paper we continue
this line of investigation, and using the urban model presented here we explore the
origin of urban structure by treating it as the result of different types of fundamental
dynamics and the phase transitions between these different dynamics.

Phase transitions between different universal classes of behavior are brought about
by varying what corresponds to the `temperature' and `pressure' of land-use interactions
within the system.We first investigate a simple situation with a single growing land-use
class up to more complex setups with multiple classes. These different behaviors of the
system can be viewed as different physical states of aggregation.

The model we propose is lattice or raster based, and has much in common with a
standard CA. The lattice dynamics is interaction based, and takes into account
interactions that decay exponentially with distance over the entire lattice and uses
a modified Markov random field (MRF) approach for the dynamics (Clark, 1951).
The land-use potentials for change are calculated locally, but the actual land-use
changes are randomly selected globally. The potentials are calculated from pairwise
first-principle interactions between cells. This approach builds on the update rule
used by White et al (1997) where interactions are to be viewed as an aggregated net
effect of many various factors where human decisions and behavior are ultimately
defining.

The addition of an edge-growth rule allows us to produce structures similar to
those generated by DLA models. Allowing a balance between edge growth and
emergence of urbanization away from already urbanized areas defines a model very
similar to that of Clarke et al (1997). The edge-growth rule requires, or at least
very strongly favors, the addition of urbanized cells to take place only adjacent to
other urban cells.
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2 Simulation framework
Each part of the simulation arguably corresponds to elements of the real-world system
of which we are representing the dynamics. In each of the following sections we shall
argue for the basic structure of our framework.

The simulation technique used borrows much of its theoretical background from
statistical physics and complex systems. Because the theoretical foundation of the
model largely belongs in these fields, we have in most cases retained the original
terminology. Some of the terms used are susceptible to misunderstanding because
they carry different meaning in different fields. Throughout, terms such as temper-
ature, density, pressure, and energy are to be interpreted as pertaining to the low-level
workings of the urban system (as defined here) and not to the energy use or current
temperature of the city. The analogies have nothing to do with refined energy such as
gasoline or electricity usage.

The aim of this work is to produce a simulation framework that integrates the
levels of detail that actual scenario prediction demands while still being well-defined
mathematically. Thus, our use of these terms does not exclude or contradict other
meanings of the same words in other fields of research.

2.1 Basic dynamics
Formally, our simulation framework consists of a modified 2D MRF (stochastic
cellular automaton) representation of the site ^ site interactions using a recursive
mean-field approach to take into account interactions not only from neighboring sites,
but from all lattice sites. Averaging is a standard method in statistical physics and has
also been explored in urban models (for example, see Batty, 1976; Broadbent, 1971). The
state transitions at the individual sites are determined by a global (probabilistic)
selection criterion, as in evolutionary selection, and not by a local selection criterion
as in the classical MRF.

The regional settlement dynamics in each iteration of the simulation can be
summarized as:

S�t� 1� � S�t� ÿ DR�t 0� � DA�t 00� , (1)

where S(t) is the global system state (lattice configuration) at time t, DR(t 0) the activity
removal dynamics, and DA(t 00) the activity addition dynamics at times t, t 0, and t 00,
respectively, with t < t 0 < t 00 < t� 1. Obviously, this defines a traditional evolutionary
dynamics with removal of the least fit activities followed by the addition of the most fit
activities within the population of available cells.

2.2 Lattice and land use
We represent land as a 2D square grid divided into N cells which are equally sized
square patches of land. In principle, any area can be simulated, although we have used
only square lattices here. Each cell corresponds to an area and its (discrete) state
represents what is on itöits land use. This means that we divide all possible uses of
land into classes which are assumed to be homogeneous within a cell and to interact
with each other in a homogeneous manner. In the simplest case, only two classes are
consideredöbuilt and ruralöbut this setup can accommodate any resolution of
land use because there is no limit to how many states a cell can take. Besides a simple
two-state land-use representation we also discuss more complex setups with multiple
land-use classes.

2.3 Markov random fields
A classical MRF (Kindermann and Snell, 1980) representation of a 2D land-use
dynamics may be defined as follows: from a set of c land uses, consider two different
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land uses a, b 2 f1, 2, ::: , cg � C. The maximum radius of land use to land-use
influence is R. The potential (`energy') of land-use class a at a given location x is

Ea �x� �
X
d 4 R

X
b2C

wab �d � , (2)

where wab (d ) is the positive or negative influence (`energy contribution') from land-use
class b to land-use class a (including transportation infrastructure) at distance d.

In order to be able to compare the suitability of cells we want to map them to the
unit interval. One way of doing this is by using the Maxwell ^ Boltzmann transforma-
tion. However, we use a positive exponent to preserve the analogy with a measure of
goodness. This means that we translate negative potential energies into low probabil-
ities and positive energies into high probabilities. To express such land-use transition
probabilitiesösay from land use b to land use aöone can use

pa �
F�Ea �x��X

b2C
F�Eb �x��

, (3)

where F is a Boltzmann transformation

F�Ea �x�� � exp�bEa �x�� , (4)

and b is a free parameter which corresponds to T ÿ1, where T is the `temperature' of the
system. Equations (2), (3), and (4) define a Markov chain in each lattice point. See
figure 1(a).

In the urban setting the temperature corresponds to the degree to which a given
activity at a given land location takes into account the influence of neighboring
activities. If the affinity between two land-use classes is thought of as a statistical
mean, the temperature acts much like the standard deviation of the distribution.
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Figure 1. The land-use transition mechanism that is used in the model can be formalized as a
classical Markov random field with Markov chains as shown in (a). However, the removal and
the addition processes are modeled separately and the update cycle that corresponds to one
transition in (a) is split into two phases: removal (b) and addition (c). As an example, we here
consider a transition between land-use class 2 and land-use class 3. During the update cycle we
first perform the death process (b) (see section 2.6.1 in the text) in which developed cells are
considered for change into the undeveloped state. During the second phase (c) (section 2.6.2) the
undeveloped cells may be changed into developed states. Taken together, they form a traditional
Markov chain, as shown in (a), where the transition probabilities are defined from those in the
two-phase update cycle as p �ab � pa0 p0b .
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The higher the temperature the less influence the neighborhood has on the location
and eventually, for high temperatures, the dynamics turn into a pure random mapping
where all transitions are equally probable. The b in the Maxwell ^ Boltzmann distribu-
tion stems from a Lagrange parameter in the calculation of a model of minimal
assumption (or maximum entropy). An interpretation of this parameter in information
theory as a measure of lack of information is consistent both with the interpretation
from statistical physics and with one that makes sense in the context of urban
dynamics. If the temperature is high, the system is only weakly determined by the
model and a low temperature means the converse.

Although the fundamental idea behind our approach is as described above, it
differs in three significant ways: (1) we take the entire geographic region into account
rather than just a small radius neighborhood, (2) the state transition probabilities are
defined globally and not locally, and (3) we split the activity change dynamics into two
processes: activity removal and activity addition as expressed in equation (1).

2.4 Mean fields and long-range interactions
Why take into account long-range interactions and why make mean-field approxi-
mations (averages) of the distant interactions? First, we believe that long-range
interactions are significant because many of our most important activities may not
be located in the immediate neighborhood of where we live. Our workplace, where
we go shopping, educational institutions, and where we spend recreational time can
be far away from where we live and still influence where we decide to settle. Second,
we believe that the further away from a given location a particular activity is located,
the weaker is its influence on the original reference location. Also the precise
location of a particular activity becomes less important the further away it is from
the reference point. These assumptions make it possible to define simple long-range
land-use ^ land-use interactions. A clear simplification is that we use an Euclidean
geometry. In reality, distance is more analogous to travel time so the transportation
network distorts the geometry.

In order to achieve a fast update algorithm when taking into account long-range
interactions, we use a recursive set of mean-field approximations (that is, spatial
averages) of distant areas rather than taking each cell into account individually. This
is done through a successive definition of aggregated lattices at different levels.

The fundamental lattice with N lattice points is referred to as the level-0 grid,
which is the grid with the highest resolution. Grids at higher levels, l, of aggregation
have cells that are mean fields (averages) of progressively larger concentric portions of
the level-0 grid. Thus, an l-level cell is contributed to by 32 times as many level-0 cells
as an (lÿ l )-level cell. These recursive levels are defined in figure 2. Starting from
the most coarse grained, or aggregated, level, L, where the whole lattice is aggregated,
32 new subgrids are generated for each recursion and thus

N � �32�L , L � 1

2
log3N , (5)

which indicates that 1
2
log3N recursive lattice-averaging operations are needed for

the update of each site. L then defines the depth of the lattice.
The cell count of activity a at location (x) on the atomic level is binary,

c �0�a �x� �
1, iff land use = a,

0, else .

�
(6)

From this we then define mean fields hcia; l; x as the count of cells of land-use class a in
a square region with side 3l centered at x.
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We have made the simple assumption that we perceive our surroundings in succes-
sive scales of detail, paying more attention to the specifics of what is close by than to
what is far away. The conception of using scales is appealing for many reasons, not
least because fractal structures seem to be inherent in many natural phenomena.
We can also trace this reasoning by looking at human concepts of geographical/
economical/political areas: continents, nations, regions, cities, suburbs, blocks, etc are
all conceptual levels of scale at which we view our world. Indeed, the idea of a
hierarchy of successive scales is well known and has for long had an important role
in geography through central place theory (Christaller, 1933).

Based on this assumption, the algorithm we use for updating the grid has a time
complexity in Y(N logN) rather than in Y(N 2) for a naive algorithm that would let all

Figure 2. An illustration of the multilevel mean-field representation is here made showing
the detail with which the center cell perceives its surroundings. The grey fields that overlay the
configuration in the background correspond to mean fields, hcia; l;x , where a is the single land use
in this configuration (developed) and x is the center of the field. Distance averaging is realized by
treating all cells within a mean field as being located at the center point x of that field.
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cells interact with each other individually.(1) The reason for this improvement is that,
instead of relating all cells to each other (N 2 ), we recursively aggregate mean fields
with a magnification factor of 9 (32) at each level. Grids are of sizes N � 32L, so we
can see that mean fields the size of the whole lattice will be aggregated in L recursions.
Looking at equation (5) we see that L � 1

2
log3 N. Thus, performing this operation for

each of the N cells of the lattice gives us N 1
2
log3 N 2 Y(N logN ).

2.5 Activity interactions
As we shall see, updates are based on fields that are calculated from interactions
between cells on the grid. The interaction strength between a pair of land-use classes
is a function of the distance between the interacting cells. Land-use classes can be
either dynamical or static. Static land uses affect dynamical ones but do not change
themselves. Cells belonging to a dynamical land-use class both change and affect
other cells. Examples of static land uses are structures such as railroads, or highways.
Examples of dynamical land uses are housing, industry, or commercial.

To make the interaction function more manageable, it is divided into two functions.
One models how the importance of the individual activities decays with distance as
more and more activities exist for each distance class. This exponential decay, d �l �, is
common for all land-use classes and is defined as

d �l � � 3ÿg 2l , (7)

which exactly accounts for the exponential increase in cells at each recursive level of
interaction with a free adjustment parameter g � 1. The influence of g is shown in
figure 3. As can be seen in equation (7) the influence of one cell on another tapers off
exponentially with distance, depending on the parameter g. This exponential decay
turns up in population density (Clark, 1951) and is taken for an empirical fact.

The other part of the interaction function models how one particular activity
influences a particular other activity at different distances when all other activities
are ignored. We term this `affinity', as it defines the microscopic pairwise (cell-to-cell)
interactions.

Throughout the paper we will use the following brief form for representing affinities:

Ai j �
�
A �0�i j , A

�l �
i j , :::A

�n�
i j

�
, n � 1

2
log3N , (8)

where A �l �i j 2 Ai j is the attraction that land use j exerts on land use i at scale l. For each
level of aggregation l and each pair of activities a and b we define an affinity as A �l �ab .
Positive function values of the affinity function mean that cells of land use b stimulate
the growth of land use a at a distance of 3l. Conversely, negative function values inhibit
growth. However, not all of these affinities have been measured directly and thus they
have to be approximated in some manner. In simulations that have been applied to
real-life problems, parameters have been tuned by using the quality with which the
model recreates the present with the past as a utility function.When good performance
is achieved, the parameters may be such that the simulation is able to generalize the
behavior of the desired system and to extrapolate the urban form and structure into
the future with some accuracy (Clarke et al, 1997).

The resulting interaction strength as a function of land-use pair and distance is
then defined by

I �l �ab � d �l �A�l �ab , (9)

which corresponds to wba in equation (2).

(1) Technically O(N logN) would also be correct, although Y(N logN) is more accurate.
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2.6 Evolutionary selection
For each cell and activity a a corresponding potential (energy) Ea (x) is calculated using
the recursive mean-field scheme:

Ea �x� �
XL
l� 0

X
b2C

I �l�ab hcib; l;x , (10)

where I �0�aa is zero, and I �0�ba expresses the inertia or potential energy cost associated with
an activity change from a to b. We assume the same cost for all activity changes.
Equation (10) gives a measure of how desirable each cell is for each dynamical land
use at this particular time. Again, we need to transform these potentials into prob-
abilities and using the Boltzmann transformation gives us a simple mapping with the
desired properties. Recall equation (2):

ba �x� � exp�bEa �x�� . (11)

Recall equation (4).

(a) (b)

(c) (d)
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Figure 3. Provided that interaction lengths are constant, tuning g lets us weigh the importance of
each distance class. The greater the value of g the shorter the effective interaction radius. Shown
is a series of energy landscapes all calculated from the lattice configuration shown in (a) with
values of (b) g � 0:25, (c) g � 0:75, and (d) g � 1:25. The urban cells are inhibited by each
other rather than attracted under the `unwilling neighbors' rule; hence the canyon-like landscape
(see section 4.1 in the text). Note that the concept of energy adopted here corresponds most
closely to land-use potentials in the tradition of urban dynamics research and the concept of
Darwinian fitness. Thus, rather than seeking energy minima, urban cells seek to maximize the
`fitness' of the cells they occupy.
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The weights ba (x) are modified by an aggregated suitability measure aa (x) which
includes layers of terrain, zoning, slope, and other factors:

ba �x� � aa �x�ba �x� . (12

The weights ba (x) may also be modified by regional constraints given by such demo-
graphic and economic factors as the total population and available workforce. We
assume such constraints to be externally determined by scenarios.

To simplify the simulation we can naturally separate the dynamics into two
processes: (1) activity removal and (2) activity addition. These two processes of birth
and death are of course closely coupled as, for example, in an activity change at a
particular location which in this context consists of an activity removal followed by an
activity addition in the same update. Removals leave vacant land and activity addition
can only occur on vacant (nonurbanized) land. The activity removal and the activity
addition processes differ in one important aspect. The activity addition consists mainly
of a global selection of the most suitable site among many possible in the urban area.
The activity removal stems mostly from a local determination of the desirability of the
current activity compared with the alternatives. Two extremes exist where either all
activities are nondesirable or where all activities are highly desirable. In either case the
relative imbalance between the different activities determines the outcome as these
local imbalances are compared globally.

2.6.1 Death processöactivity removal
Because of the importance of local imbalance between the desirability of current activity
on a given site, the activity removal process is defined through two steps. The first step

sRa �x� �
exp� bEa �x��

z�x� , (13)

where

z�x� �
X
b2C

exp� bEb �x�� , (14)

defines the local desirabilities (probabilities) where the most desirable activity has the
highest value. As a second step the transformation�

sRa �x�
�ÿ1 � z�x�

exp� bEa �x��
�
X
b2C

exp
�
b�Eb �x� ÿ Ea �x��

	
(15)

defines the least desirable activity with the highest value. By normalizing the local
reciprocal activity desirabilities over the entire region we obtain global probabilities
similar to equation (13) which expresses the `fitness landscape' for activity removal. The
local activity-removal fitness is now

sR �a �x� �
�
sRa �x�

�ÿ1
ZR

, (16)

where

ZR �
X
b2C

�
sRb �x�

�ÿ1
. (17)

In section 2.3 transition probabilities from activity a to undeveloped land are defined
for the MRFs. Computationally, the activity removal process is defined in the follow-
ing manner. We need to map a random number to a cell with a probability given by
equation (13). Then

SR
a �

X
x

sR �a �x� (18)
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defines the sum of all the Boltzmann-transformed potentials for a certain land-use
class a. We now store all partial sums of a summation over the whole lattice

sR
a �k� �

Xk

x� 1

sR �a �x� . (19)

Then we select a uniformly distributed random number r 2 �0,SR
a ) and investigate for

which k, sR
a (kÿ 1) 4 r < sR

a (k). The index k then gives the cell we change. See
appendix A for an example.

In the same way as for the activity addition process [equation (24) below], to ensure
reasonable competition for activity removal, we switch appropriately between the
different land-use classes in the selection process to generate undeveloped sites.

2.6.2 Birth processöactivity addition
Conceptually, the activity addition dynamics is defined through a global selection of
cells based on their `fitness'. For each land-use activity a

sAa �x� �
exp� bEa �x��

ZA
a

(20)

defines the local fitness normalized over the entire region

ZA
a �

X
x

exp� bEa �x�� . (21)

Note that sAa (x) defines the transition probabilities to activity a for the MRF over the
vacant or undeveloped cells.

Analogous to the activity removal process the activity addition process can be
computationally defined through

SA
a �

X
x

sAa �x� , (22)

the global sum of all local probabilities for a certain land use a together with the stored
partial sums of these same local probabilities summed over the whole lattice

sA
a �k� �

Xk

x� 1

sAa �x�. (23)

We select a uniformly distributed random number r 2 �0,SA
a ) and investigate for

which k, sA
a (kÿ 1) 4 r < sA

a (k). The index k then gives the cell to which we add an
activity.

To ensure an appropriate site competition between the different activities in the
multiactivity simulation a switch between their associated selection processes is defined
through

PA
a �t� �

Ua �t�XjUj
i� 0

Ui �t�
, (24)

where Ua (t) defines the (here externally determined) temporal changes in land use a. As
equation (24) is updated after each selection, the correct number of activity additions
can be ensured. Because the regional growth or contraction is determined by the
number of additional activities minus the number of activity removals we still need
to define (in section 2.7) how each of these processes can be derived from the overall
activity changes.

The following example clarifies the importance of randomizing the order of addi-
tion as well as removal: assume that, in a simulation, land-use class `residential'
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happens to have an index lower than that of c̀ommerce'. If we were consistently to add
the cells of the residential land-use class before those of the commercial, the lattice
points that happen to be in demand by both will more often be occupied by residential.
Any correlated order we choose will result in bias. The importance of randomizing the
order of changes during an interval when a discrete representation of time is used is a
common problem, not specific to urban systems.

2.7 Settlement dynamics
The regional settlement dynamics in each iteration of the simulation are summarized
in equation (1). Obviously, this defines a traditional evolutionary dynamics with
removal of the least fit activities followed by the addition of the most fit activities
within the population of available cells. Both the activity removal and the activity
addition are characterized by random sequential processes which are running without
a recalculation of the global systems state. Thus, this simulation update is similar to an
Euler update of a differential equation and as such only small changes to the system
state can occur in each update. Technically, this means that at most a few percent of
the activities can be changed in each update. In the simulation where this applies, we
have used 1 ^ 10% global changes in each update. The relative difference between the
activity addition and removal process defines the urban growth or contraction and
the fraction of cells with activity changes determines the land-use turnover. Note
that the same growth can be obtained through many different addition and removal
combinations as long as the difference between the activity removal and addition is
constant.

3 Urban phase transitions
To tackle the multitude of detailed behaviors of a dynamical system, typical properties
of the dynamics, the so-called `universal classes of behavior', are often sought. The
question we ask when doing so is: `̀Are there significant portions of the parameter
space throughout which the system seems to behave in a qualitatively similar way?''
Maybe there is a measurable property of clustering or some other statistical property
that can be observed and used as an order parameter. When the system undergoes a
transition from one phase to another, it suddenly starts to behave in a fundamentally
different way. Ideally, as defined for an infinite and steady-state simulation, the transi-
tion in fact constitutes a discontinuity in some order derivative and thus there is indeed
no interval between the two behaviors. Despite not being strictly defined for these
simulations, because cities are nonequilibrium, growing, structures, the basic feature
where large parts of the parameter space exhibit a uniform behavior is still clearly
present.

3.1 Urban phase transitions
For a dynamical system with as many states and state interactions as our urban
settlement simulation we should expect the existence of multiple types of dynamics
(universality classes) possibly separated by phase transitions. And this is indeed true for
our simulations.

Perhaps the best known and the simplest classification of different types of
dynamics is the distinction between matter's three phases: gas, liquid, and solid.
Each of these phases is characterized as belonging to different universal classes of
dynamics because they behave in fundamentally different ways and are separated by
phase transitions. Other well-known physical examples of phase transitions can be
found within liquid mixtures such as water and oil. Oil and water will spontaneously
separate into two phases, but if detergent (soap) is added this separation is organized
as a mixture of small oil droplets with detergent at the oil ^ water interface, dependent
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on the amount and type of detergent. Analogs of all the above transitions found in
simple physical systems can easily be located within the urban settlement dynamics as
we have defined them. As we discuss such transitions between these qualitatively
different types of urban settlement dynamics we also discuss what they mean in the
urban setting.

It should be noted that phase transitions are not easily defined for nonequilibrium
dynamical systems such as a growing city. Still, the mechanism we are looking at is the
same, and it is evident how the tuning of, for example, the `temperature' will take us
through sharp transitions between two different universal classes of behavior in the
urban settlement dynamics.

Idealized simulations with a uniform background as we use here are too simplistic
to produce cities that look much like what we might expect to find on a map. However,
the purpose of this exercise is to discuss (1) some of the rich dynamics this type of
simulation can generate, (2) the transitions between these qualitatively different types
of dynamics, and (3) what it means for real urban dynamics.

3.2 Settlement temperature
For the simple, single land-use class simulations we use a generalized affinity function
defined as A00 � f0, 1, 1, 1, 1g [equation (8)]. As we vary b or T ÿ1 as defined in
equation (4) and keep the number of urbanized cells constant over time we observe a
significant shift in all observables as reflected in figure 4 and color plate 1(a).

This dynamic indicates a first-order transition from gas to liquid as the gas
condenses into droplets which merge and eventually form a single aggregate. As the
temperature decreases further, the condensation process is faster, and more metastable
local clusters appear. The lattice size used in these simulations (figure 4 and color
plate 1) is (35)2 � 2436243 and the simulation time is very long (3000 updates) to
ensure a steady state. In each update 10% of the urbanized cells are redistributed
[DR � DA in equation (1)].

Because of the steady-state condition these transitions do not map directly onto a
realistic urban growth situation because real urban systems presumably never reach
a steady state. Real city growth should be considered to exhibit nonequilibrium,
transient dynamics. The difference between a steady-state condition and the transient
dynamics is partly illustrated as we compare figure 5 with color plate 1 (see over).

In figure 5 (see over), a constant number of randomly located urbanized cells are
used as initial conditions. As can be seen from the figure, the cluster formation occurs

(a) (b) (c)

Figure 4. Temperature phase transition: (a) gas, (b) near-transition, and (c) liquid. Spatial
correlation is plotted against distance and b (Tÿ1) on a 2436243 lattice.
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very quickly for high b values (low temperatures) and it does not occur for values
below the phase transition value b � 0:38.

The temperature in the urban settlement dynamics corresponds to the sensitivity
with which a given land-use type cares about its neighborhood. The lower the
temperature the more attention is paid to the local land-use environment. For tem-
peratures above criticality, no attention is paid to the local land-use structure, and the
resulting land-use dynamics becomes a random mapping between the possible land
uses. Obviously, all known cities are presumably below this transition although small,
local areas within a city may be thought of as having a high temperature in the
modeling sense.

The history of human settlement holds many examples of what can be thought of
as temperature transitions. When large (ancient) cites disintegrated they did so because
the mutual advantage of, or even the possibility of, living in a cluster disappeared.
Another way of thinking about a high-temperature situation regionally could be an
idealized urban area where transportation time does not factor in. Modern information
technology (IT) such as telephones and computer networks are excellent examples of
recent technology that diminishes the importance of distance and thereby possibly
increases the temperature of the system under our definition. Indeed, companies that
provide services mainly via IT, such as computer support providers, often operate from
rural areas where the workforce is cheaper.

3.3 Settlement pressure (density)
For a constant increase in the total number of urbanized cells on a given lattice, which
defines the pressure, we again observe what looks like a first-order transition from a
gas phase to a liquid phase as the urbanized cells start to aggregate. See color
plate 1(b). The autocorrelation function is fairly constant below the critical pressure
(about 4850 cells on a 2436243 lattice) and as clusters begin to form it rises and
eventually levels off as clusters are formed (above 5200 urbanized cells).
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Figure 5. Dynamics of a temperature transition: energy plotted against time and b (Tÿ1) on a
2436243 (243 � 35) lattice. Note how the transition between the two states of the system (liquid
and gas) occurs earlier and gets sharper the further the temperature drops below the transition
temperature (which corresponds to b about 0.38).
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The pressure transition from gas to liquid can be observed in many contemporary
urban growth situations. Such a transition can, for instance, be seen along the city edge
when two urban areas grow into each other. At a certain point the landscape between
the formerly separated developed areas fills in on a much shorter timescale than that
required for the two urban areas to touch each other. This has, for instance, been seen
in the cities of the Ruhr district in Germany after the Second World War. This can also
be observed at a much smaller scale as `infill' between `arms' of modern urban sprawl
in the southwestern part of the USA.

3.4 Multiple land-use interaction transitions
Yet other types of phase transitions can be seen for multiple land-use dynamics. We
now discuss a sequence of transitions which are analogous to samples of a phase
diagram for three different fluids. As c̀ontrol parameters' we do not use temperature
or pressure, but the interaction functions between the different land uses. For the sake
of discussion assume that these three land uses represent housing, commerce, and
industry. See color plate 2. Initially they all mix well which can be mapped onto
similar, mutually attracting affinities, which means that we have urban clusters with
mixed land uses [color plate 2(a)].

If we now change the housing ^ industry interaction such that housing dislikes
industry, pure industry clusters emerge, together with other clusters with well mixed
commerce and housing. This situation is analogous to the phase separation between oil
and water [color plate 2(b)].

Changing housing to dislike commerce nearby, and changing commerce to dislike
commerce far away, we obtain a situation where the three land uses can coexist in
several different ways. Here we observe structured clusters with all land uses present
where housing and commerce are neighbors which again are neighbors with industry.
This situation is analogous to oil in water with a surfactant at the interface between the
two. The dynamics also allow clusters with only housing and commerce and clusters
with only industry and commerce. Note how the commerce can be completely `dis-
solved' within the industry cluster and how the commerce is clustered (`nonsoluble')
within the housing cluster [color plate 2(c)].

Transitions as generated here are observed in many places in the world. In many
ways an artificial separation between land uses is forced on the urban dynamics through
zoning regulations. Mixed-use areas are seen in many older cities in Europe and Asia
whereas a clean separation of land use is more recent. It is nevertheless represented on
all continents as, for example, suburban growth and the downtown business district.

4 Modifications of the basic Markov random field dynamics
Using a simple additional `stickyness' rule under which new urbanized cells are con-
strained to appear only next to other urbanized cells we can generate structures that
are very similar to those resulting from a diffusion-limited aggregation (DLA) process
(Batty and Langley, 1994; Witten and Sander, 1983).

If this edge-growth rule is complemented by a small additional chance for urbani-
zation away from any urbanized area we define a model very similar to the urban
growth model developed by Clarke et al (1997). Formally we obtain this dynamics
from the simple MRF formulation by introducing a parameter E, E 2 �0, 1

2
�. We multiply

the calculated MRF edge probabilities for each land-use class with (1ÿ E) and the
other MRF potentials away from urbanized cells with E, where E is typically very small.
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Color plate 2. Black, blue, red, and green cells are industry, commerce, residential, and undevel-
oped, respectively. Transitions between different universal classes of behavior are here brought
about by changing the affinity component of the interaction functions [Equation (8) in the text].
In configuration (a) all land-use classes stimulate growth of all land-use classes. In (b) a
transition where industry is clustered separately is brought about by altering one of the affinity
vectors correspondingly. In (c) two additional affinity vector changes give rise to a fairly complex
spatiotemporal behavior where clusters move over the lattice and instabilities cause sudden
shifts: residential dislikes commerce near and commerce dislikes commerce far.
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Color plate 3. Potential landscapes calculated from figure 8(a) are shown. By landscapes we
mean that each lattice point in the figure corresponds to a cell in a configuration. The figures on
the left show landscapes calculated using all range classes and those on the right show landscapes
using only close-range interactions. The top landscapes show nonnormalized probabilities for site
selection before application of the (1ÿ E) factor and the bottom images depict the landscape after
the application of that rule. Because urbanized cells repel further urbanization under the `unwill-
ing neighbors' rule, the inclusion of long-range interactions will cause interior parts to receive
more negative contributions compared with exposed parts. Looking at the bottom-left figure, it is
evident how protruding parts of the configuration are more prone to growth than are interior,
more shielded, parts.

Color plate 1 (see opposite). Autocorrelation plot (association of land use with itself) for single
land-use phase transitions (2436243 lattice and steady-state conditions with equal amount of
addition and removal): (a) b (temperature) sweep; (b) density (pressure) sweep. The correlation
measure provides a picture of the difference between the observed distribution and a background
distribution, which is taken to be an entirely random pattern. A positive correlation (z-axis) for a
certain distance (x-axis) means that at that distance from a developed cell the likelihood that an
arbitrary cell is also developed is higher than for a random pattern. The converse is true for
negative correlations. In the plots we can see that for low values of b and total developed area,
the configuration is found to correspond well to a random configuration (correlation � 0 for all
distances). Then, as b or the number of developed cells increases, the short-scale correlation
jumps to a higher value. This indicates a transition from nonclustered to clustered patterns.

Color plate 4. In this time-series we see the growth of `Rockville'. The topography is computer
generated and suitabilities [equation (12) in the text] are derived for each site as a function of
slope. The cells correspond to land areas with a side of roughly 100 m, the simulated growth has
taken place on a time scale of a few decades. The configuration is seeded only by the two limited-
access roads that run north ^ south and east ^west. Note that the vertical relief of these images is
exaggerated by a factor of two.



Note that at its limits, E corresponds to only edge growth and no preference for edges,
respectively. Recalling equation (20), we can formulate this transformation as

sAa �i, j � �
exp�bEa �i, j ��

ZA
a

�1ÿ E�; iff cell is adjacent to urban land,

exp�bEa �i, j ��
ZA

a

E, else:

8>><>>: (25)

These small modifications are interesting because they connect empirical, theoretical,
and simulation results by different research groups. For a more detailed discussion of
these issues, see section 5.

4.1 Unwilling neighborsösimilarities with DLA
As an example of a dynamics that generates structures similar to DLA, we define the
following simple growth rule which we call the `unwilling neighbors' rule. We find this
rule to apply reasonably well to several types of land use such as (1) single-family
residential and (2) low-density commercial. The rather simple rationale for this rule
is as follows: (1) a common desire for single families is to live in a less-developed area
and yet have access to the infrastructure of the city; (2) commercial land uses such as
supermarkets with customers mainly using cars for transportation have reason to seek
out land that is connected to infrastructure but less developed because of lower land
prices.

This translates roughly into a rule where undeveloped land is attracting and
urbanized land is repelling. However, new houses must appear adjacent to existing
buildings in order to be connected to infrastructure such as streets, power, sewage,
etc. In figure 6 we see the results of a series of simulations using this rule. Note that
no removal occurs, only addition of new urbanized cells. The configurations visually
resemble DLA configurations for large parts of the parameter space (g and b ) provided
that growth can take place unhindered. The measured radial fractal dimension is
around 1.5 for these regions of parameter space.

4.2 Similarities with space-filling fractals
The logic of the `unwilling neighbors' rule suggests that, although similar to DLA, the
dynamics are rather those of a space-filling fractal. Land is developed by using a
greedy algorithm that maximizes the probability to select land that is least surrounded
by urban land. However, it is not until the structure begins to run out of space that the

(a) (b) (c)

Figure 6. Dendritic, DLA-like structures. The morphology is affected by the b � Tÿ1 parameter:
(a) b � 0:03125, (b) b � 0:5, (c) b � 1:0. The figure demonstrates two distinct regimes of
behavior and the transition between them: structured and nonstructured.
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difference becomes obviousöas long as crowding does not occur, the growth rule
never has to reconsider previously suboptimal areas.

4.3 Global versus local interactions
Mean-field models have been proven capable of producing DLA structures
(Muthumukar, 1983). The renormalization approach with long-range interactions
used in our simulation is crucial for bringing about this DLA-like behavior (figure 7)
and it cannot be reproduced using a short-range neighborhood cellular automaton.
In figure 8 we see how the dentritic properties of the configurations disappear as
fewer scales are employed (less global, mean-field information). The potential
(energy) that drives the dynamics is depicted in color plate 3 which demonstrates
why MRFs with only local interactions cannot produce DLA-like dynamics.

4.4 Realistic urban settlements
Here we present results from simulations using multiple land-use classes with arguably
realistic interactions. This cell configuration will be referred to as `Rockville' (color
plate 4 and appendix B). Suitability data calculated from a generated topographical
map are used. Because urban growth is a dynamical system, the impact of suitability
data is quite profound: even minute differences in development, initially brought about

(a) (b) (c)

Figure 7. In this figure, the boundary conditions are such that the surrounding land has no land
use (as opposed to undeveloped land use). Hence, the structure avoids the edges and thereby
inherits the square shape of the lattice. In (a) the structure is not yet constrained by the grid's
edges and still very much resembles a DLA, t � 250. In (b) the structure is beginning to be
constrained and starts to grow parallel to the edges of the map, t � 500. In (c) the structure also
begins to grow back on itself, all the time locally minimizing penalty, t � 750.

(a) (b) (c)

Figure 8. Removal of the influence from successively lower scales until only the nearest-neighbor
interactions are left: (a) all scales used, (b) top scale ignored, (c) two top scales ignored.
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by a small difference in suitability, can be reinforced over time and become a major
feature in the future configuration.

The simulation that is shown here uses an 81681 lattice. With the (1ÿ E) rule as
defined in section 4, the result is that the majority of all growth takes place along the
edge between urban and rural land. However, new centers of growth occur constantly
and serve as precursors for the spread of developed land. The dynamic land uses
are: residential, commercial/industry/wholesale, and infrastructure/minor buildings
represented by the colors red, grey, and light grey, respectively. Undeveloped land is
the ray-traced green surface and the only static land-use class used is limited-access
roads, represented by black.

5 Other urban simulations
The multiactivity simulation introduced here can be transformed, through a few minor
changes, into, or more correctly approximated to, the urban evolution simulation
originally developed by White et al (1997). Most importantly, a high b value is needed
as it corresponds to a decrease in noise through a lowering of the temperature. This
ensures that the most desirable activities get their fitness values significantly increased.
To maintain a reasonable noise level in the dynamics, noise now has to be added to
these selection values before a global selection occurs. By introducing a cutoff to the
recursively defined levels of interaction the interaction radius can be limited to a small
area around each cell as in the White et al simulation. To make actual predictions
using the current simulation we also need to introduce suitabilities as defined in
equation (12) derived from zoning and topography which is already included in the
simulation developed by White et al. An example of the use of suitabilities to illustrate
realistic urban dynamics in our current simulation is demonstrated in section (4.4) and
color plate 4.

The urban growth simulation originally developed by Clarke et al (1997) is also
based on a microscopic selection dynamics where existing settlements and transporta-
tion infrastructure enhance the desirability for urbanization. It has a single urbanized
land-use type which our model can also be defined to have. The dynamics of this
simulation are defined through a four-step process consisting of: (1) spontaneous
growth, (2) new spreading centers, (3) edge growth, and (4) road-influenced growth
(Candau et al, 2000). The two main differences between our current approach and
the Clarke et al approach are that we use a longer range (explicit) potential (energy)
function. Second, our approach in its simplest form does not account for a preferred
edge growth, which is very important to obtain realistic urban morphology.We have to
introduce this edge effect as an additional condition. Obviously, the Clarke et al
simulation has an implicit ènergy' function which promotes growth at the edges of
existing urbanized cell clusters and only a uniformly shallow energy potential away
from these urbanized clusters. The concept of layers in the Clarke model is almost
analogous to the concept of static land-use classes in our model.

Noting that urbanization often takes place on the edges of an urban area, cluster
models from statistical physics have been applied to explain urban morphology.
In particular, the DLA model (Batty and Longley, 1994) and models of correlated
percolation (Makse et al, 1995; 1998) have been successful in replicating some of
the general behavior of urban evolution. The relation between r, the radius from the
c̀entral business district', and population density r has been found (Clark, 1951) to be

r�r� � r0 exp�ÿlr� . (26)
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The DLA model generates a branching structure with a fractal geometry that predicts
that the relationship should be a power law,

r�r� � rDÿ2 . (27)

Thus, it does not produce the correct geometry in itself. The correlated percola-
tion model, however, corrects this by using a density gradient that conforms to
equation (26).

Another example of such an edge process is developed by Schweizer and
Schimansky-Geier (1994) in their `active walker' approach. Both the DLA dynamics
and the active walker processes are fundamentally a diffusion aggregation process
(either passive or active) where small particles of `free' built structures diffuse around
and between existing built areas and eventually attach themselves to existing built
areas once the two `touch' each other. Despite the apparent lack of correspondence
between the real microdynamics of urban growth based on desirabilities, pricing,
roads, etc, this diffusion aggregation process generates urban aggregates with several
macroproperties also observed in real urban areas such as the morphology and the
fractal dimension.

The model developed in this paper also bears some resemblance to the master-
equation-based sociodynamics approach (Weidlich, 1995; 2000) in that both generate
spatial structure in response to a field generated by the structure itself, and both are
forced by exogenously determined growth. But the sociodynamic model contains a
global structuring term, so that one of the determinants of land use is distance from
the previously specified center of the urban structure; in this sense, the structure is to a
certain degree imposed rather than generated, although another model is able to
generate organizing centers.

The concept of using a hierarchy of scales for describing urbanization is well
established in geography through central place theory (Christaller, 1933; White, 1977;
1978), and renormalization is a standard method in statistical physics. Spatial inter-
action models have been used extensively in the past for social modeling and
introduced the concept of using interactions between activities on a lattice in models
of urban growth and transportation (Batty, 1991; Golledge and Stimson, 1997; Helbing,
1995; Nagel et al, 1997; Transims, 1998; Weidlich, 1995; 2000; Wilson, 1970; Yamins
et al, 2002). These are in a sense similar to the approach developed hereöfor example,
both assume that spatial structure and spatial interaction are mutually determined.
However, the emphasis was primarily on predicting interzonal flows rather than on
achieving an understanding of spatial structure.

Finally we should mention a simulation of large-scale systems of settlements that
is proposed by Zanette and Manrubia (1997; 1998). They use a reaction ^ diffusion
process on a 2D lattice. Results are consistent with the well-known scaling law that
states that frequency as a function of city size follows a power law,

f�n� / nÿr , (28)

where n is the number of inhabitants and r � 2. The reasoning behind this intermittency
model stems from the theory of self-organized criticality (Bak, 1996). Dynamical
systems with an external driving force, such as Bak's classical sand-pile model, often
exhibit a power-law scaling of event sizes (such as avalanches in the case of the sand
pile).
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6 Conclusion
Our urban growth simulation is based on the multiple-land-use concepts originally
developed by White et al (1997). However, it takes into account land-use interactions
over the entire lattice and uses a modified Markov random field as the (energy)
potential function. Instead of letting the introduction of new land use be governed
by purely local, independent probabilities as in an ordinary MRF, we use a global
selection similar to selection on a fitness landscape.

In a single land-use version of the simulation, we initially discuss clustering versus
nonclustering dynamics as a function of what corresponds to temperature and pressure
and demonstrate how these qualitatively different dynamics are analogous to different
physical states of aggregation (liquid and gas). In a multiple land-use model we change
the land-use ^ land-use interaction functions and demonstrate how multiple phase
separations and phase structuring occur between the different land-use classes. These
findings are discussed in the context of observed urban dynamics, and examples are
used to illustrate their validity.

We then investigate how slight modifications to the MRF formulation brings us
close to previously defined urban growth models. The addition of a rule that requires
urbanized cells to appear adjacent to already urbanized cells generates behavior very
similar to that of a diffusion-limited aggregation model which has mainly been dis-
cussed as a possible model of urban growth by the physics community (Batty, 1991;
Batty and Longley, 1994; Makse et al, 1995; 1998; Stanley et al, 1996). As a more
general formulation of this modification we allow a small urbanization E away from
the already urbanized areas and still have most of the urbanization at the edges of
already urbanized areas (1ÿ E). Exclusive edge growth thus corresponds to E � 0,
using this formulation. On the other hand, using E > 0 we formulate a model that is
very similar to the urban growth models developed by Clarke et al (1997) and capable
of generating growth patterns reminiscent of urban sprawl. With this approach we
demonstrate the ability of our simulation to produce state configurations similar to
observed cities.

The importance of aggregational processes in models of urban growth has been
noted by several researchers (Batty and Longley, 1994; Makse et al, 1998; Witten and
Sander, 1983). Although this is one important aspect, another equally important is the
interaction mode of CAwhere land parcels are dynamically updated depending on their
neighborhood. The analogies that can be made between these two approaches and the
workings of the real-world system are very clear and intuitive. Nevertheless, a classical
CA is not even in principle capable of reproducing the spatial dynamics of a DLA and a
DLA lacks many obvious aspects of realism that are captured in the CA approach. Our
model bridges this gap without a dramatic increase in computational complexity and
thus lets us combine the benefits of both approaches (Muthumukar, 1983).
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Appendix Aöselection algorithm
To clarify the selection algorithm, let us consider the following example. We have a
262 grid S of potentials (a very small map) for a single land use a with n � 2:
S � �f2, 3g, f7, 3g	. Then, SR

a � 15, and the partial sums are S � � �f2, 5g f12, 15g	.
The range in which we pick our random number r would be �0, 15), so if we pick an
arbitrary number, say 11, we find that 5 4 11 < 12 for k � 2. This is the cell we
transform to the undeveloped land use.

By repeatedly picking random numbers and skipping over already selected cells it is
possible to reuse equation (19) many times and thus remove exactly the desired number
of new activities in each update.

Appendix Böparameters used for `Rockville'
We have used a lattice size of 81681 and parameter values b � 3:0, g � 0:9, and
E � 0:001. The following set of land uses: C � fresidential, commerce/industry,
mixed, undeveloped, limited-access highwayg. Of these the first three grow dynami-
cally. The index of each land use in C will be used hereafter to identify them. Each time
t the following number of each land-use type was added to the configuration at
time tÿ 1 on average: 0.5,1, 0.5.

Interactions between the land uses are defined as follows [see equation (8)]:

A00 � f2, ÿ 2, 2, 0g, A01 � fÿ1, ÿ 1, 2, 1g, A02 � f2, 2, 0, 0g, A03 � f0, 0, 0, 0g,
A04 � fÿ1, 1, 1, 1g,

A10 � f0, 0, 1, 1g, A11 � f1, 1, ÿ 1, 2g, A12 � f1, 1, 0, 0g, A13 � f0, 0, 0, 0g,
A14 � f1, 2, 2, 2g,

A20 � fÿ0:5, 0, 2, 2g, A21 � f2, 2, 0, 0g, A22 � fÿ4, ÿ 4, 0, 2g,
A23 � f0, 0:5, 0:5, 1g, A24 � fÿ2, 0, 0, 0g.
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